Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
1.
Cytotherapy ; 25(6 Supplement):S109, 2023.
Article in English | EMBASE | ID: covidwho-20236255

ABSTRACT

Background & Aim: Liposomes are spherical-shaped vesicles composed of one or more lipid bilayers. The ability of liposomes to encapsulate hydro- or lipophilic drugs allowed these vesicles to become a useful drug delivery system. Natural cell membranes, such as Bioxome, have newly emerged as new source of materials for molecular delivery systems. Bioxome are biocompatible and GMP-compliant liposome-like membrane that can be produced from more than 200 cell types. Bioxome self-assemble, with in-process self-loading capacity and can be loaded with a variety of therapeutic compounds. Once close to the target tissue, Bioxome naturally fuse with the cell membrane and release the inner compound. Orgenesis is interested in evaluating the potential of Bioxome as new drug delivery system for treatment of several diseases, including skin repair, local tumour or COVID19. Methods, Results & Conclusion(s): Bioxome were obtained from adipose- derived Mesenchymal Stem Cells, with a process of organic- solvent lipid extraction, followed by lyophilization and sonication assemblage. During the sonication process, Bioxome were charged or not with several cargos. Size distribution of empty Bioxome was detected by Particle Size Analyzer (NanoSight). Electron Microscopy (EM) was performed to assess Bioxome morphology. Lipid content was evaluated by electrospray ionization system. Dose response in vitro test on human lung fibroblasts treated or not with Bioxome encapsulating a specific cargo (API) against COVID19 were performed. NanoSight analysis showed that nanoparticle size in Bioxome samples ranged between 170+/-50 nm, with a concentration ranging between 109-1010+/-106 particles/mL. EM clearly showed the double phospholipid layers that composes the Bioxome. Stability study demonstrated that Bioxome are stable in size and concentration up to 90 days at +4Cdegree or even at RT. No change in size between encapsulated Bioxome with small size (~340 Da) cargo vs empty Bioxome was observed up to 30 days storage. Lipidomic analysis approach revealed that the yield of lipids and their composition are satisfactory for a therapeutic product using Bioxome. Lastly, in the in vitro model of COVID19, Bioxome encapsulating API effectively saved cells from death (20x vs untreated cells) and at lower doses of API than these of non-encapsulated cargo (0.005 microM vs 0.1 microM). Bioxome seems to be an excellent candidate for liposome mimetic tool as drug delivery system for targeting specific organs and diseases treatment.Copyright © 2023 International Society for Cell & Gene Therapy

2.
Environ Dev Sustain ; : 1-46, 2023 May 29.
Article in English | MEDLINE | ID: covidwho-20238242

ABSTRACT

Imposing lockdown amid COVID-19 pandemic has severely affected flower cultivation and their trades. Flower plants are very sensitive to the harvesting, and any unexpected delay may cause great loss (~ 50-60%) to the farmers. In 2018-2019, the worth of total production of floriculture products was ~ Rs 571.38 crore. During lockdown, the availability of human laborers and restricted transport has disrupted the supply of flowers to the market. Hence, some alternative options are suggested here for the farmers, for example, conversion of decorative flowers (e.g., anthurium, China aster, globe amaranthus, sweet-william, anemone, sea lavender, etc.) and inflorescence (e.g., Michaelmas daisy, zinnia, statice, ferns, aspidistra, eucalyptus, magnolia, etc.) can also be into value-added products through drying and dehydration technologies. Many dehydration methods such as hot air oven, solar drying, press drying, freeze-drying, embedded drying, glycerine drying, and microwave oven drying polyester drying can be used for flower drying at room temperature (~ 25 °C). These floral and foliage dehydration techniques are quite simple, which can also be operated by unskilled persons. Moreover, it will generate self-employment for the youth and women along with increased revenue than selling fresh flowers. In this review, different techniques of flower drying have been discussed in detail along with the influencing factors, efficiency, economic feasibility, flower waste management and sustainability. Further, it has also been suggested how these techniques could be useful for farmers, researchers, and traders to create value-added products? Hence, the present paper could be very interesting for the flower growers, retailers, students, as well as floricultural scientists who are involved in flower production worldwide.

3.
Foods ; 12(11)2023 Jun 05.
Article in English | MEDLINE | ID: covidwho-20233717

ABSTRACT

The aim of this study was to evaluate the effect of the freeze-drying process on the preservation of mare's milk. This was achieved through the characterization of the functional properties of reconstituted freeze-dried mare's milk. The chemical composition, bulk density, foam capacity, and ability to form emulsions of the atherogenic, thrombogenic, and hypercholesterolemic fatty acid index were investigated. The freeze-drying process did not change the proportion of the milk components in the dry matter. The moisture content of the freeze-dried mare's milk was 10.3 g/kg and the bulk was below 0.1 g/mL. The foaming capacity was 111.3%; hence, the foaming capacity of the milk was very poor. The oil binding capacity was 2.19 g/g of protein. The freeze-drying process improves the binding degree and retention of oil by milk proteins, but produced foam was unstable, short-lived, and lacked the ability to retain air fractions. The atherogenic index and thrombogenic index values calculated for reconstituted milk were 1.02 and 0.53, respectively. The hypercholesterolemia fatty acid index was 25.01.

4.
Drying Technology ; 40(15 p.3064-3071):3064-3071, 2022.
Article in English | ProQuest Central | ID: covidwho-2320851

ABSTRACT

As the vaccine was successfully developed, the spread of the epidemic (COVID-19) was effectively controlled. But there are still thousands of people affected COVID-19 after being vaccinated. Neutralizing activity has become a critical method for quantifying neutralizing antibody against SARS-CoV-2. However, limited to the strict conditions of cold chain transportation, the neutralizing activity test has not been widely promoted. In this study, a room-temperature-storable chemiluminescence freeze-drying mixes for SARS-CoV-2 neutralizing antibody detection was developed to decrease the cost of lyophilization step for promoting its application in third world countries. Several freeze concentrated solutions were used to protect the antigen bioactivity. The mixes can be stored at room temperature over 12 months and still exhibited great accuracy and precision. Thus, the proposed room-temperature-storable chemiluminescence freeze-drying mixes offers a cheap and stable storage method for SARS-CoV-2 neutralizing antibody detection and shows a great potential for promoting the neutralizing activity test.

5.
Int J Pharm ; 640: 122983, 2023 Jun 10.
Article in English | MEDLINE | ID: covidwho-2320484

ABSTRACT

While cocrystal engineering is an emerging formulation strategy to overcome drug delivery challenges, its therapeutic potential in non-oral applications remains not thoroughly explored. We herein report for the first time the successful synthesis of a cocrystal for remdesivir (RDV), an antiviral drug with broad-spectrum activities against RNA viruses. The RDV cocrystal was prepared with salicylic acid (SA) via combined liquid-assisted grinding (LAG) and thermal annealing. Formation of RDV-SA was found to be a thermally activated process, where annealing at high temperature after grinding was a prerequisite to facilitate the cocrystal growth from an amorphous intermediate, rendering it elusive under ambient preparing conditions. Through powder X-ray analysis with Rietveld refinement, the three-dimensional molecular structure of RDV-SA was resolved. The thermally annealed RDV-SA produced by LAG crystalized in a non-centrosymmetric monoclinic space group P21 with a unit cell volume of 1826.53(17) Å3, accommodating one pair of RDV and SA molecules in the asymmetric unit. The cocrystal formation was also characterized by differential scanning calorimetry, solid-state nuclear magnetic resonance, and Fourier-transform infrared spectroscopy. RDV-SA was further developed as inhaled dry powders by spray drying for potential COVID-19 therapy. The optimized RDV-SA dry powders exhibited a mass median aerodynamic diameter of 4.33 ± 0.2 µm and fine particle fraction of 41.39 ± 4.25 %, indicating the suitability for pulmonary delivery. Compared with the raw RDV, RDV-SA displayed a 15.43-fold higher fraction of release in simulated lung fluid at 120 min (p = 0.0003). RDV-SA was safe in A549 cells without any in vitro cytotoxicity observed in the RDV concentration from 0.05 to 10 µM.


Subject(s)
COVID-19 , Chemistry, Pharmaceutical , Humans , Chemistry, Pharmaceutical/methods , Administration, Inhalation , COVID-19 Drug Treatment , Lung , Particle Size , Powders/chemistry , Dry Powder Inhalers
6.
Allergy: European Journal of Allergy and Clinical Immunology ; 78(Supplement 111):338, 2023.
Article in English | EMBASE | ID: covidwho-2291411

ABSTRACT

Background: The potential aerosol spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV- 2) has been suggested. While indoor air sampling for SARS-CoV- 2 has demonstrated detectable viral RNA and has been related to virus transmission, the contribution of outdoor air to the spread of the viral infection is not yet known. We aimed at developing a methodology to detect the virus in outdoor air. Method(s): T he s ampling w as p erformed u sing a C HEMVOL v olumetric impactor (Butraco) equipped with 2 stages (PM > 10 & 2.5 > PM > 10um). Filters were collected and preserved at -80 degreeC. Total RNA extraction was performed directly from the collected filters with the Phenol-Chloroform method using TRItidy GTM reagent according to the manufacturer's instructions. For total RNA purification samples were purified with the commercial kit E.Z.N.A. Total RNA Kit I. Real-Time Reverse Transcription PCR was executed to detect the N gene from the Sarbecovirus family and RdRp gene from SARS-CoV- 2 using the ViroReal Kit SARS-CoV- 2 Multiplex. A protein-rich fraction was obtained with ammonium bicarbonate buffer extraction followed by lyophilization. SARS-CoV- 2 spike protein was assessed by specific immunological detection (SARS-CoV- 2 Antigen Test Kit). Result(s): RT-PCR for N gene results, identifying Sarbecovirus family, were positive and Cq > 33, in the samples from the last week of December 2020 and the first and second weeks of January 2021, in both PM > 10 and 2.5 > PM > 10. The RdRp gene was undetectable, probably due to low virus concentration. The protein samples from the same days tested positive for the specific antigen spike protein. All results combined confirm the detection of SARS-CoV- 2 in outdoor air. Conclusion(s): Airborne SARS-CoV- 2 was detected in ambient air. These results will contribute to an early detection of SARS-Cov- 2 in ambient air, thus eventually providing the base for early alert systems allowing the implementation of preventive measures to control outbreaks.

7.
J Control Release ; 358: 128-141, 2023 06.
Article in English | MEDLINE | ID: covidwho-2303394

ABSTRACT

Neutralising monoclonal antibody (mAb) is an important weapon in our arsenal for combating respiratory viral infections. However, the effectiveness of neutralising mAb has been impeded by the rapid emergence of mutant variants. Early administration of broad-spectrum mAb with improved delivery efficiency can potentially enhance efficacy and patient outcomes. WKS13 is a humanised mAb which was previously demonstrated to exhibit broad-spectrum activity against SARS-CoV-2 variants. In this study, a dual targeting formulation strategy was designed to deliver WKS13 to both the nasal cavity and lower airways, the two critical sites of infection caused by SARS-CoV-2. Dry powders of WKS13 were first prepared by spray drying, with cyclodextrin used as stabiliser excipient. Two-fluid nozzle (TFN) was used to produce particles below 5 µm for lung deposition (C-TFN formulation) and ultrasonic nozzle (USN) was used to produce particles above 10 µm for nasal deposition (C-USN formulation). Gel electrophoresis and size exclusion chromatography studies showed that the structural integrity of mAb was successfully preserved with no sign of aggregation after spray drying. To achieve dual targeting property, C-TFN and C-USN were mixed at various ratios. The aerosolisation property of the mixed formulations dispersed from a nasal powder device was examined using a Next Generation Impactor (NGI) coupled with a glass expansion chamber. When the ratio of C-TFN in the mixed formulation increased, the fraction of particles deposited in the lung increased proportionally while the fraction of particles deposited in the nasal cavity decreased correspondingly. A customisable aerosol deposition profile could therefore be achieved by manipulating the mixing ratio between C-TFN and C-USN. Dual administration of C-TFN and C-USN powders to the lung and nasal cavity of hamsters, respectively, was effective in offering prophylactic protection against SARS-CoV-2 Delta variant. Viral loads in both the lung tissues and nasal wash were significantly reduced, and the efficacy was comparable to systemic administration of unformulated WKS13. Overall, dual targeting powder formulation of neutralising mAb is a promising approach for prophylaxis of respiratory viral infections. The ease and non-invasive administration of dual targeting nasal powder may facilitate the widespread distribution of neutralising mAb during the early stage of unpredictable outbreaks.


Subject(s)
Antibodies, Monoclonal , COVID-19 , Humans , Powders , SARS-CoV-2 , Respiratory Aerosols and Droplets , Administration, Inhalation , Particle Size , Dry Powder Inhalers
8.
Latin American Journal of Management for Sustainable Development ; 5(4):321-347, 2022.
Article in English | ProQuest Central | ID: covidwho-2269853

ABSTRACT

Approximately 70% of the food consumed in Brazil comes from family farming, mainly composed of small farmers. Small farmers are especially active in the fruits and vegetables (FV) chains in Brazil and were severely affected by the COVID-19 pandemic, contributing to the degradation in the country's food security. This paper explores how social innovation in the FV sector can contribute to social-ecological systems resilience and supply chain resilience, using as the main theoretical background the adaptive cycle framework. The article was based on documentary analysis and semi-structured interviews, exploring the FV sector issues at a macro-level and then focusing on the case study of Sumá, a social enterprise from Southern Brazil. Sumá develops small farmers and connects them to regular food purchasers in small towns, promoting sustainable food systems. This case study stands out as an example of how to identify, evaluate and take advantage of market opportunities and public sector gaps in order to generate economic growth and multidimensional social impact.

9.
Journal of Drug Delivery Science and Technology ; 74 (no pagination), 2022.
Article in English | EMBASE | ID: covidwho-2267490

ABSTRACT

Over the past decade, compared to all other macromolecules lipid-based nanocarriers have proven to be an excellent carrier and delivery system for various pharmaceutical drugs of poor bioavailability. In addition to that, they exhibit exceptional qualities such as minimal toxicity, economical scale-up production, great biocompatibility, and high drug loading efficiency. In this study, we have discussed the various types of lipid nanoparticles, such as liposomes, nanostructured lipid carriers, solid lipid nanoparticles, and lipid polymer hybrid nanoparticles. We have also conferred in detail, the composition, shape and size, methods of preparation, advantages, and certain limitations associated with these lipid-based nanocarriers. Additionally, we have exclusively accounted for several examples of lipid-based nanomedicines that have either been approved and commercialized or are under the different phases of clinical trials. The current review overall focuses on the up-to-date research that has recently been published in view of developing lipid-based nanocarriers for various biological applications, including gene therapy, breast cancer therapy, and vaccine development.Copyright © 2022

10.
Adv Colloid Interface Sci ; 314: 102870, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2275378

ABSTRACT

Drying of biologically-relevant sessile droplets, including passive systems such as DNA, proteins, plasma, and blood, as well as active microbial systems comprising bacterial and algal dispersions, has garnered considerable attention over the last decades. Distinct morphological patterns emerge when bio-colloids undergo evaporative drying, with significant potential in a wide range of biomedical applications, spanning bio-sensing, medical diagnostics, drug delivery, and antimicrobial resistance. Consequently, the prospects of novel and thrifty bio-medical toolkits based on drying bio-colloids have driven tremendous progress in the science of morphological patterns and advanced quantitative image-based analysis. This review presents a comprehensive overview of bio-colloidal droplets drying on solid substrates, focusing on the experimental progress during the last ten years. We provide a summary of the physical and material properties of relevant bio-colloids and link their native composition (constituent particles, solvent, and concentrations) to the patterns emerging due to drying. We specifically examined the drying patterns generated by passive bio-colloids (e.g., DNA, globular, fibrous, composite proteins, plasma, serum, blood, urine, tears, and saliva). This article highlights how the emerging morphological patterns are influenced by the nature of the biological entities and the solvent, micro- and global environmental conditions (temperature and relative humidity), and substrate attributes like wettability. Crucially, correlations between emergent patterns and the initial droplet compositions enable the detection of potential clinical abnormalities when compared with the patterns of drying droplets of healthy control samples, offering a blueprint for the diagnosis of the type and stage of a specific disease (or disorder). Recent experimental investigations of pattern formation in the bio-mimetic and salivary drying droplets in the context of COVID-19 are also presented. We further summarized the role of biologically active agents in the drying process, including bacteria, algae, spermatozoa, and nematodes, and discussed the coupling between self-propulsion and hydrodynamics during the drying process. We wrap up the review by highlighting the role of cross-scale in situ experimental techniques for quantifying sub-micron to micro-scale features and the critical role of cross-disciplinary approaches (e.g., experimental and image processing techniques with machine learning algorithms) to quantify and predict the drying-induced features. We conclude the review with a perspective on the next generation of research and applications based on drying droplets, ultimately enabling innovative solutions and quantitative tools to investigate this exciting interface of physics, biology, data sciences, and machine learning.


Subject(s)
COVID-19 , Male , Humans , COVID-19/diagnosis , Colloids/chemistry , Drug Delivery Systems , Solvents , Blood Proteins
11.
Pharmaceutics ; 15(3)2023 Mar 22.
Article in English | MEDLINE | ID: covidwho-2255981

ABSTRACT

This work illustrates the development of a dry inhalation powder of cyclosporine-A for the prevention of rejection after lung transplantation and for the treatment of COVID-19. The influence of excipients on the spray-dried powder's critical quality attributes was explored. The best-performing powder in terms of dissolution time and respirability was obtained starting from a concentration of ethanol of 45% (v/v) in the feedstock solution and 20% (w/w) of mannitol. This powder showed a faster dissolution profile (Weibull dissolution time of 59.5 min) than the poorly soluble raw material (169.0 min). The powder exhibited a fine particle fraction of 66.5% and an MMAD of 2.97 µm. The inhalable powder, when tested on A549 and THP-1, did not show cytotoxic effects up to a concentration of 10 µg/mL. Furthermore, the CsA inhalation powder showed efficiency in reducing IL-6 when tested on A549/THP-1 co-culture. A reduction in the replication of SARS-CoV-2 on Vero E6 cells was observed when the CsA powder was tested adopting the post-infection or simultaneous treatment. This formulation could represent a therapeutic strategy for the prevention of lung rejection, but is also a viable approach for the inhibition of SARS-CoV-2 replication and the COVID-19 pulmonary inflammatory process.

12.
Molecules ; 28(5)2023 Mar 04.
Article in English | MEDLINE | ID: covidwho-2283249

ABSTRACT

Elderflower extracts are known to be a source of valuable substances that show a wide spectrum of biological activity, including antibacterial and antiviral properties, which demonstrate a degree of effectiveness against SARS CoV-2. In this work, the influence of fresh inflorescence stabilisation methods (freezing, air drying, and lyophilisation) and extraction parameters on the composition and antioxidant properties of the extracts were studied. Wild elderflower plants growing in the Malopolska Region of Poland were studied. Antioxidant activities were evaluated by 2,2-diphenyl-1-picrylhydrazyl free radical-scavenging ability and ferric-reducing antioxidant power assays. The total phenolic content was determined using the Folin-Ciocalteu method and the phytochemical profile of the extracts was analysed using HPLC. The obtained results showed that the best method for the stabilisation of elderflower was lyophilisation, and the determined optimal maceration parameters were 60% methanol as a solvent and a process time of 1-2 days.


Subject(s)
COVID-19 , Sambucus nigra , Antioxidants/chemistry , Plant Extracts/chemistry , Phenols/chemistry , Plants
13.
J Control Release ; 357: 149-160, 2023 05.
Article in English | MEDLINE | ID: covidwho-2272030

ABSTRACT

Messenger RNA (mRNA) lipid nanoparticles (LNPs) have emerged at the forefront during the COVID-19 vaccination campaign. Despite their tremendous success, mRNA vaccines currently require storage at deep freeze temperatures which complicates their storage and distribution, and ultimately leads to lower accessibility to low- and middle-income countries. To elaborate on this challenge, we investigated freeze-drying as a method to enable storage of mRNA LNPs at room- and even higher temperatures. More specifically, we explored a novel continuous freeze-drying technique based on spin-freezing, which has several advantages compared to classical batch freeze-drying including a much shorter drying time and improved process and product quality controlling. Here, we give insight into the variables that play a role during freeze-drying by evaluating the impact of the buffer and mRNA LNP formulation (ionizable lipid to mRNA weight ratio) on properties such as size, morphology and mRNA encapsulation. We found that a sufficiently high ionizable lipid to mRNA weight ratio was necessary to prevent leakage of mRNA during freeze-drying and that phosphate and Tris, but not PBS, were appropriate buffers for lyophilization of mRNA LNPs. We also studied the stability of optimally lyophilized mRNA LNPs at 4 °C, 22 °C, and 37 °C and found that transfection properties of lyophilized mRNA LNPs were maintained during at least 12 weeks. To our knowledge, this is the first study that demonstrates that optimally lyophilized mRNA LNPs can be safely stored at higher temperatures for months without losing their transfection properties.


Subject(s)
COVID-19 , Nanoparticles , Humans , Temperature , RNA, Messenger , COVID-19 Vaccines , Freeze Drying/methods , Lipids
14.
Drying Technology ; 41(2):322-334, 2023.
Article in English | Scopus | ID: covidwho-2245476

ABSTRACT

Currently, an estimated 20% of the population in Sub-Saharan Africa is food insecure with the incidence of hunger and malnutrition still rising. This trend is amplified by the socio-economic consequences of the COVID-19 pandemic. In contrast, more than a third of the harvestable perishable produce is lost due to a lack of preservation or failure to utilize preservation as is the case for underutilized crops (UCs). Moreover, some of the preservation techniques utilized are poor, leading to the deterioration of food quality, especially the micronutrients. In this study, we thus exemplarily investigated the impact of different drying settings on the quality of two highly nutritious UCs, namely cocoyam and orange-flesh sweet potato (OFSP) (40, 60, and 80 °C for cocoyam and 40, 50, 60, and 70 °C for OFSP) to deduce the optimum quality retention and further develop a theoretical design of processing units and processing guidelines for decentralized food processing. Drying cocoyam at 80 °C and OFSP at 60 °C, respectively resulted in a relatively shorter drying time (135 and 210 min), a lower total color difference (2.29 and 11.49-13.92), greater retentions for total phenolics (0.43 mg GAE/100 gDM and 155.0-186.5 mg GAE/100 gDM), total flavonoid (128 mg catechin/100 gDM and 79.5-81.7 mg catechin/100 gDM) and total antioxidant activity (80.85% RSA and 322.58-334.67 mg AAE/100 gDM), respectively for cocoyam and OFSP. The β-carotene, ascorbic acid and vitamin A activity per 100 gDM of the OFSP flours ranged between 6.91- 9.53 mg, 25.90 − 35.72 mg, and 0.53 − 0.73 mg RAE, respectively. © 2022 The Author(s). Published with license by Taylor and Francis Group, LLC.

15.
Journal of Food Process Engineering ; 2023.
Article in English | Web of Science | ID: covidwho-2238382

ABSTRACT

Ultrasound technology is a green and environment-friendly technology that rarely causes thermal damage to food products. In this review, we present an overview of the application of ultrasound technology for the dehydration of food products, including pre-treatments such as ultrasound, osmotic dehydration, and ultrasound-assisted osmotic dehydration. Dehydration promotes the preservation of food products and increases the shelf life of the food products by reducing water activity. In addition, the ultrasound-assisted drying of food products is highlighted. The influence of ultrasound and ultrasound-assisted osmotic dehydration parameters on drying kinetics and food quality is also discussed. The application of pre-treatments enhances the mass transfer rate, increases the drying rate and drying efficiency, reduces drying time, and helps to retain food properties such as texture and nutrition value. Generally, ultrasound and osmotic dehydration application decreases water activity, increases rehydration ability, improves product color, and reduces nutrient losses. To conclude, we have discussed the use of ultrasound applications for improving the quality and safety of produce before and after the drying process.

16.
Pharmacy Education ; 20(3):77.0, 2020.
Article in English | EMBASE | ID: covidwho-2234408

ABSTRACT

Background: In 2020, the COVID19 pandemic has shown the medical need for vaccinations. The conventional method of vaccine application is intravascular injection of a liquid solution. However, this method is associated with some disadvantages, such as a high risk of infection. Purpose(s): The approach of a needle-free ballistic administration accelerates solid powder particles to a sufficient speed so that they are able to penetrate into the skin and address target Langerhans cells. For this purpose, the particles require certain characteristics (Weissmueller et al., 2017). The main criteria for a successful application is the particle size as well as the density (Maa et al., 2004). Method(s): One potential production process is freeze-drying out of a solution with a subsequent milling step (abbreviated to FD). Another modified approach is spray-freeze drying (abbreviated to SFD). Dried powders are treated afterwards by ultrasonic microsieving (6000 vibrations per seconds for ten minutes) in order to segregate a useable fraction (38 mum to 75 mum). Tap density was determined according to the protocol by Ph.eur. guidelines. Helium pycnometry determines the true density. The magnitude of density is described by the quotient of tap density rho tap and pycometric density rho He-pycnometer. Result(s): Estimated density of examined samples containing trehalose and mannitol could not exceed 50%. Conclusion(s): The described techniques reveal a quite porous structure of the product. This structure might not be sufficient for particles to successfully penetrate into the skin. These powder particles might burst upon the surface. However the dimension of the speed has to be considered as well as it plays a crucial role as well.

17.
Quality Assurance and Safety of Crops & Foods ; 15(1):123-138, 2023.
Article in English | ProQuest Central | ID: covidwho-2204209

ABSTRACT

α-lipoic acid (LA) is a potent antioxidant available in various plant and animal sources. Of late, there is high market demand for LA-based nutraceuticals, owing to enhanced occurrences of oxidative stress-based diseases. However, the effectiveness of LA is challenged with its low solubility, less stability, and low bioavailability. In addition, the unpleasant taste of LA limits its applications in food systems. In this context, encapsulation techniques can modify the chemical and biological properties of LA and improve its solubility and stability in the aqueous medium, which in turn helps in the development of different innovative therapeutic products based on LA. Different encapsulation techniques such as inclusion complexes, spray drying, electrospraying, solid lipid nanoparticles (SLN), emulsification, and liposomes have been explored for the encapsulation of LA. This review focuses on the biological activities of LA in terms of antioxidant, antidiabetic, anticancer, and anti-inflammatory properties, and the scope of encapsulation to enhance these properties, as evidenced through in vitro and in vivo studies. Furthermore, this article will help researchers and industrialists to select the suitable encapsulation method based on their requirement for delivering LA to achieve its optimal therapeutic potential.

18.
Solar Energy ; 251:158-170, 2023.
Article in English | ScienceDirect | ID: covidwho-2183452

ABSTRACT

Solar Air Heater (SAH) technology as a drying method for agricultural commodities is only active during the day and is highly dependent on the weather. Therefore, this study aims to investigate the effect of SAH coupled with phase change material (PCM) types of paraffin wax, soy wax, and palm wax as store energy materials to enhance the performance of conventional SAH. The PCM containers placed in the SAH are ex-bottles of milk cans which are numerous in the country due to the increase in consumption of milk by the people as an immunity enhancer during the Covid-19 pandemic. This is expected to improve the 3R (Reduce, Reuse, Recycle) strategy implemented to reduce environmental pollution. The tests conducted showed that the three types of PCM effectively improved the performance of SAH in drying agricultural commodities. The highest energy efficiency was achieved with paraffin at 30 %, 23.28 %, and 33.67 % while the highest exergy efficiency was achieved with palm wax at 20.27 %, 18.86 %, and 28.96 %, in three days respectively at different solar irradiation conditions.

19.
International Journal of Innovation and Applied Studies ; 38(2):262-270, 2022.
Article in English | ProQuest Central | ID: covidwho-2147521

ABSTRACT

The cereal group occupies a prominent place in the dietary habits of the populations of southern Benin and there are few recent consumption data on cereals. This study aims to assess the consumption, acquisition and supply of cereals to households in Cotonou. A semi-directive survey with KoB°Collect was conducted with 345 households to collect individual cereal food consumption data. The survey data studied by inferential statistics showed that the most consumed cereals are corn (99%, p=l), rice (85%, p=0.936), wheat (35%, p=0.999), sorghum (15%, p=0.659), millet (10%, p=0.971) and fonio at less than 5%. The most common mode of acquisition is buying from secondary market (95%, p=0.987) and street (85%, p=0.999) retailers. The most used preservation techniques are: drying at room temperature (70%, p=0.619) and keeping the product away from light (30%, p=0.806). Households most often dry in areas laid out at home (70%, p=0.984) or at the edge of the road (30%, p=0.939). Storage places are very diverse: the kitchen (45%, p=0.871), the bedroom (40%, 0.998), the living room (25%, p=0.900) and the store (20, 0.931). In addition, the supply costs of cereals increased from 0.009 USD to 0.056 USD between 2020 and 2021. This vertiginous rise in prices is due to the covid19 pandemic. The various data emitted make it possible not only to have fresh data but also to invest them in the assessment of health risks for the achievement of a high level of protection of the health and life of consumers.

20.
Pharmaceutics ; 14(6)2022 Jun 18.
Article in English | MEDLINE | ID: covidwho-2163552

ABSTRACT

The requirement of an undisrupted cold chain during vaccine distribution is a major economic and logistical challenge limiting global vaccine access. Modular, nanoparticle-based platforms are expected to play an increasingly important role in the development of the next-generation vaccines. However, as with most vaccines, they are dependent on the cold chain in order to maintain stability and efficacy. Therefore, there is a pressing need to develop thermostable formulations that can be stored at ambient temperature for extended periods without the loss of vaccine efficacy. Here, we investigate the compatibility of the Tag/Catcher AP205 capsid virus-like particle (cVLP) vaccine platform with the freeze-drying process. Tag/Catcher cVLPs can be freeze-dried under diverse buffer and excipient conditions while maintaining their original biophysical properties. Additionally, we show that for two model cVLP vaccines, including a clinically tested SARS-CoV-2 vaccine, freeze-drying results in a product that once reconstituted retains the structural integrity and immunogenicity of the original material, even following storage under accelerated heat stress conditions. Furthermore, the freeze-dried SARS-CoV-2 cVLP vaccine is stable for up to 6 months at ambient temperature. Our study offers a potential solution to overcome the current limitations associated with the cold chain and may help minimize the need for low-temperature storage.

SELECTION OF CITATIONS
SEARCH DETAIL